Computer Vision: Local Features (Do, 04.12.2014)

Anmeldung erforderlich

RWTH

Für RWTH-Angehörige und aus dem RWTH-Netz verfügbar

Anmelden
  • Einbetten

Kapitel:

00:00:00
Lecture 12: Local Features
00:00:07
Course Outline
00:01:44
Recap: Sliding-Window Object Detection
00:02:08
Classifier Construction: Many Choices...
00:02:29
Recap: AdaBoost
00:04:20
Recap: AdaBoost Feature+Classifier Selection
00:07:38
Recap: Viola-Jones Face Detector
00:10:34
Limitations of Sliding Windows (continued)
00:11:45
Limitations (continued)
00:15:15
Topics of This Lecture
00:15:42
Motivation
00:17:28
Application: Image Matching
00:18:24
Harder Case
00:18:46
Harder Still?
00:20:27
Application: Image Stitching
00:22:25
General Approach
00:24:16
Common Requirements
00:25:37
Invariance: Geometric Transformations
00:27:11
Levels of Geometric Invariance
00:30:23
Requirements
00:32:33
Many Existing Detectors Available
00:33:44
Keypoint Localization
00:34:53
Finding Corners
00:35:50
Corners as Distinctive Interest Points
00:38:03
Harris Detector Formulation
00:46:55
Harris Detector Formulation
00:50:20
What Does This Matrix Reveal?
00:52:34
General Case
00:54:35
Interpreting the Eigenvalues
00:56:40
Corner Response Function
00:58:47
Window Function w(x,y)
01:00:57
Summary: Harris Detector [Harris88]
01:07:06
Harris Detector: Workflow
01:09:34
Harris Detector - Responses [Harris88]
01:11:32
Harris Detector: Properties
01:14:59
Hessian Detector [Beaudet78]
01:16:55
Hessian Detector - Responses [Beaudet78]
01:18:42
Topics of This Lecture
01:19:47
References and Further Reading