Computer Vision: Motion and Optical Flow (Do, 22.01.2015)

Anmeldung erforderlich

RWTH

Für RWTH-Angehörige und aus dem RWTH-Netz verfügbar

Anmelden
  • Einbetten

Kapitel:

00:00:00
Lecture 20: Motion and Optical Flow
00:01:10
Course Outline
00:01:26
Recap: Epipolar Geometry - Calibrated Case
00:02:09
Recap: Epipolar Geometry - Uncalibrated Case
00:03:25
Recap: The Eight-Point Algorithm
00:05:27
Recap: Normalized Eight-Point Algorithm
00:07:30
Practical Considerations
00:15:26
Topics of This Lecture
00:16:37
Video
00:17:22
Motion and Perceptual Organization
00:20:41
Uses of Motion
00:21:26
Motion Estimation Techniques
00:22:46
Topics of This Lecture
00:22:56
Motion Field
00:24:02
Motion Field and Parallax
00:35:01
Topics of This Lecture
00:35:36
Optical Flow
00:37:01
Apparent Motion ≠ Motion Field
00:37:44
Estimating Optical Flow
00:39:58
The Brightness Constancy Constraint
00:47:40
The Aperture Problem
00:48:43
The Barber Pole Illusion
00:49:43
Solving the Aperture Problem
00:53:41
Conditions for Solvability
00:54:52
Eigenvectors of AᵀA
00:56:28
Interpreting the Eigenvalues
00:57:12
Edge
00:58:15
Low-Texture Region
00:58:43
High-Texture Region
00:59:32
Per-Pixel Estimation Procedure
01:00:47
Iterative Refinement
01:03:08
Optical Flow: Iterative Refinement
01:06:34
Some Implementation Issues
01:09:55
Extension: Global Parametric Motion Models
01:12:02
Example: Affine Motion
01:14:27
Problem Cases in Lucas-Kanade
01:16:29
Dealing with Large Movements
01:17:05
Temporal Aliasing
01:18:52
Idea: Reduce the Resolution!
01:19:55
Coarse-to-fine Optical Flow Estimation
01:21:30
Dense Optical Flow
01:23:10
Summary
01:25:00
References and Further Reading